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Role of pointlike topological excitations at criticality: From vortices to global monopoles

Nuno D. Antunes,1 Luı́s M. A. Bettencourt,2 and Martin Kunz3
1Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

2Center for Theoretical Physics, Massachusetts Institute of Technology, Building 6-308, Cambridge, Massachusetts 02139
3Department of Astrophysics, Oxford University, Keble Road, Oxford OX1 3RH, United Kingdom
~Received 17 January 2002; revised manuscript received 5 April 2002; published 21 June 2002!

We determine the detailed thermodynamic behavior of vortices in the O~2! scalar model in two dimensions
~2D! and of global monopoles in the O~3! model in 3D. We construct numerical techniques, based on cluster
decomposition algorithms, to analyze the point defect configurations. We find that these criteria produce results
for the Kosterlitz-Thouless temperature in agreement with a topological transition between a polarizable
insulator and a conductor, at which free topological charges appear in the system. For global monopoles we
find no pair unbinding transition. Instead a transition to a dense state where pairs are no longer distinguishable
occurs atT,Tc , without leading to long-range disorder. We produce both extensive numerical evidence of this
behavior as well as a semianalytic treatment of the partition function for defects. General expectations forN
5D.3 are drawn, based on the observed behavior.
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I. INTRODUCTION

The detailed understanding of the many roles played
nonperturbative topological excitations in the dynamics a
thermodynamics of statistical models and field theories
one of the most fascinating and largely unresolved issue
many-body systems.

In the simplest Abelian gauge field theories vortices
intimately connected with the existence of a superconduc
state in type-II materials@1#. Excitations carrying topologica
numbers~instantons, monopoles, vortices! are also thought
to be the best candidates for an explanation of confinem
in non-Abelian gauge theories@2#. In the context of statisti-
cal models with global symmetries it has long been und
stood that topological excitations can lead to the onse
phase disorder at high temperatures@3#. Their presence in
configurations in one spatial dimension~1D! in models with
local interactions down toT501 prohibits, in fact, the es-
tablishment of long-range order at any finite temperat
@4,5#. In dissipative dynamical systems the long-range dis
der and temporal scaling present in the long-time limit
phase ordering kinetics can also be understood in term
topological excitations@6,7#.

Several canonical examples illustrate the role of topolo
cal excitations in bringing about phase transitions@3,8,9#.
Among them the best known is the Kosterlitz-Thouless~KT!
transition. At low temperatures the O~2! model in 2D exhib-
its algebraic long-range order, which would persist to
temperatures in the absence of topological excitations.
advent of disorder at high temperatures is due to vortex
citations, which appear as free charges at the Koster
Thouless temperatureTKT .

Recently, due largely to increases in computational po
and improved methods, many of these systems have bec
available to direct quantitative study. This is particularly tr
of models with global symmetries, embodied to a large
tent by O(N)-symmetric magnets or field theories.

An interesting question then is what happens as we p
gressively stray away from cases where topological exc
1063-651X/2002/65~6!/066117~13!/$20.00 65 0661
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tions are known to dominate critical thermodynamic beh
ior? In this article we investigate this question for poi
defects in O(N) models inD dimensions, taking as a startin
point the Kosterlitz-Thouless transition, i.e., the caseD5N
52. The successes of the renormalization group at cha
terizing critical behavior inD.2 suggest that physics in th
critical region is dominated by perturbative excitations~spin
waves!. In particular asN increases, mean-field description
become suitable. In this limit thermodynamic effects due
topological defects are totally unexpected. What then
comes of the topological excitations? Do they disapp
from the spectrum as likely fluctuations, or do they still o
cur but in a manner that does not lead to long-range dis
der?

The answers to these questions are necessary unde
nings for a general picture of the behavior of topologic
excitations both in equilibrium and as seeds for the format
of topological defects upon cooling. Current understand
of the formation and evolution of topological defects@10,11#
in cosmology and in condensed matter requires the pres
in the disordered phase of fluctuations, which upon cool
can result in long-lived topologicaldefects. Familiar ex-
amples are long vortex strings~cosmic strings! or well-
separated monopole-antimonopole pairs. If these config
tions are rare in thermal equilibrium, above the transitio
their abundances will be very small and short lived up
cooling. Such behavior may have significant phenomenolo
cal implications and shed new light on old questions such
the monopole problem in cosmology@12# or the planning of
defect formation experiments in condensed matter syste

In this paper we study in detail the similarities and diffe
ences between the statistical behavior of vortices in the O~2!
2D model and of global monopoles in the 3D O~3! model, in
thermal equilibrium. For reasons that we make clear in S
II this step, betweenN5D52 andN5D53, straddles the
boundary between a case where topological excitations d
an order-disorder transition~the former! and a case where
topological excitations may be expected to become ther
dynamically irrelevant, at least for the long-distance phys
©2002 The American Physical Society17-1
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that is characteristic of criticality.
This problem has been investigated in several instance

the past, leading to important insights, but a consistent
ture of the thermodynamics of global monopoles has ye
emerge. The strongest evidence for an important role pla
by monopoles at criticality in the O~3! model in 3D comes
from the study of modified partition functions, which includ
monopole suppression terms@13,14#. Lau and Dasgupta@13#
showed that the introduction of one such term, suppres
all monopole fluctuations, results in the disappearance
critical behavior altogether. Later Kamal and Murthy@14#
used a different monopole suppression term, which allow
monopole-antimonopole pairs with lattice space separa
only. They found a new second-order transition, with exp
nents different from those of the conventional O~3! univer-
sality class. Lau and Dasgupta@13# also claimed that at the
critical temperature of the conventional O~3! model the tem-
perature derivative of the monopole densitydr/dT exhibits a
divergence, which they argued would signal monopo
antimonopole pair unbinding. This claim was also taken
by Huang, Kolke, and Polonyi@15#, who conjectured that the
phase transition in the O~3! model would then be driven by
monopole-antimonopole separation, in analogy with the v
tex unbinding that triggers the Kosterlitz-Thouless transit
in the O~2! model in 2D. Later the evidence for a divergin
dr/dT disappeared with a high precision cluster algorith
study by Holme and Janke@16#, who showed thatdr/dT
behaves like the specific heat, which does not diverge atTc .
Moreover, Bitar and Manousakis@17# searched for unbound
monopoles by considering phase correlations along clo
loops in space. They concluded that no such configurat
could be found, implying that the unbinding of monopol
plays no role in the critical thermodynamics of the O~3!
model inD53.

This body of evidence paints a complex picture of t
behavior of monopoles at criticality in the O~3! magnet in
3D. It suggests that while monopole degrees of freedom
important in bringing about disorder with increasing te
perature and contribute nontrivially to the physics of theN
53, D53 universality class, they are not essential for t
establishment of long-range disorder. In particular their
havior may not be critical at all atTc . Thus, drawing analo-
gies with the Kosterlitz-Thouless transition may provide
poor guide to their thermodynamics.

The present paper is dedicated to elucidating some
these questions through a detailed comparative study of
critical behavior of monopoles and vortices in the O~3!
Heisenberg magnet and theN5D52 XY model, respec-
tively. This article is organized as follows. In Sec. II w
review and extend standard free energetic arguments
point defects of O~N! scalar models inD dimensions. These
arguments are both simple and very powerful in determin
whether topological transitions can occur and in elucidat
their nature. In Sec. III we characterize the thermodyna
behavior of vortices in the Kosterlitz-Thouless transition
analyzing their statistical clustering properties. We find,
agreement with the Kosterlitz-Thouless paradigm, that
transition proceeds by pair unbinding, which can be obser
prior to a vortex percolation transition. The latter occurs a
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slightly higher temperature, approximately where the spec
heat peaks. Armed with this quantitative information of t
KT transition and the analytical arguments of Sec. II, w
analyze, in Sec. IV, the statistical properties of monopoles
the O~3! model in 3D. We find no unbinding transition a
expected on energetic grounds alone, but still a percola
transition occurs at a temperature belowTc . We develop
methods to describe the monopole behavior quantitativ
and argue that the observed percolation transition can o
without leading to long-range disorder of the order para
eter. We thus establish the separation between the nontr
monopole thermodynamic behavior and criticality. Finally
Sec. V we discuss our results in the larger context of O~N!
scalar theories inD dimensions. We argue that the criteria
Sec. II are sufficient to determine whether topological d
fects undergo an unbinding transition.

II. FREE ENERGY CONSIDERATIONS FOR O „N… POINT
DEFECTS IN D DIMENSIONS

We can gain insight into the importance of topologic
excitations in O(N) models inD dimensions as vehicles o
disorder by estimating the free energy associated with n
pair excitations. Later we will specialize to two particul
cases, those of vortices in 2D and of global monopoles
3D, whose thermodynamics we investigate in detail in S
III. The line of argument used in this section follows th
original reasoning by Kosterlitz and Thouless@18# in moti-
vating the topological transition in the 2DXY model, with
appropriate generalizations.

To be definite we consider a general O(N)-symmetric
lf4 theory in D spatial dimensions. The Hamiltonian
written as

H@f#5E dDxH 1

2
u¹f~x!u21

l

4
@ uf~x!u22h2#2J , ~1!

where f(x) is an N-component real field andufu2
5f(x)fT(x).

The O(N) symmetry of Eq.~1! breaks spontaneously a
low temperatures to O(N21), and the field acquires a non
zero expectation value. The degenerate set of minima lie
a SN21 sphere. It follows that the homotopy grou
pN21(SN21)5Z, the group of integers, which implies tha
topological solutions with integer charge exist in the sp
trum of the theory. InD5N dimensions these are point de
fects. The best know cases are the kink~or domain wall! in
D5N51, the global vortex forD5N52, and the global
monopole~or hedgehog! in D5N53.

These topological defects are classical static solutio
i.e., they are~local! energy minima satisfyingdH/df50. In
D dimensions point defects are radially symmetric solutio
The integer topological charge of these configurations
plies a singularity at their origin (r 50), which forces the
field amplitudew(r→0)→0. For larger it is energetically
necessary that the field amplitude approach the minimum
the potentialw(r→0)→w05h.

These boundary conditions do not guarantee that the
fect’s energy is finite. In fact forD>2 the energy of topo-
7-2
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logical defects still diverges in the infinite-volume limit as
consequence of the phase gradient terms, which dominat
energy far from the singularity atr 50. These phase grad
ents lead to an asymptotic form of the energy, for largel,

E.E
uxu, l

dx
1

2
u¹fu2}w0

2nq
2E

0

l

drr D21
1

r 2
, ~2!

wherenq is the topological charge of the field configuratio
The diverging energy of a single defect forD>2 prohib-

its it from occurring as a fluctuation in thermal equilibriu
in the infinite-volume limit. Instead, defects can occur
defect-antidefect multipoles~usually pairs!, which due to
mutual screening can then have finite energy, a continu
function of their separation. In the case of a pair, the cha
separation introduces a natural cutoff to Eq.~2! which can be
used as an estimate for the energy of a pair of sizel. This
naive expectation may be changed forN5D.3 @19#, where
the minimal energy configuration between two topologi
defects was argued to be one in which the far field is rota
to a uniform phase everywhere in space, apart from the
gion between the defects, where energy is concentrated
which behaves as a string@20#. Then the interaction potentia
between two point topological defects inD5N.3 will be of
the same qualitative form as inD5N53, although the asso
ciated string tension will differ quantitatively~it is expected
to increase withN).

The simplest interesting example of interacting point d
fects is that of vortices inD52. The vortex-antivortex di-
pole has a field

VD52
dipole~r !.2w0

2nq
2@ ln~ urW1 lW/2u!2 ln~ urW2 lW/2u!#

52w0
2nq

2F rW• lW

r 2
1OS l 2

r 2D G , ~3!

where lW is the vector connecting the positive to the negat
charge in the pair. As a consequence of Eq.~3! a point vortex
far away from the dipole interacts with it via a potenti
inversely proportional to distance. Two well-separated pa
then interact with a potential

VD52
pairs~r !.w0

4nq
4F lW1• lW222~ r̂ • lW1!~ r̂ • lW2!

r 2
1OS l 3

r 3D G , ~4!

wherelW1 and lW2 are the separation vectors within each of t
pairs,rW is the vector connecting the center of the two pa
and r̂ 5rW/r . Thus a dilute gas of weakly interacting vorte
pairs can exist at low temperatures.

Global monopoles have stronger linearly confining pot
tials. Their dipoles therefore behave as

VD53
dipole~r !.2w0

2nq
2@ urW1 lW/2u2urW2 lW/2u#

52w0
2nq

2F r̂ • lW1OS l 2

r D G . ~5!
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Although finite, the potential of this dipole is still substantia
Two well-separated pairs of monopoles then interact via

VD53
pairs~r !.w0

4nq
4F lW1• lW22~ r̂ • lW1!~ r̂ • lW2!

r
1OS l 3

r 2D G . ~6!

Since the interacting potential decreases inversely with se
ration, we see that monopole pairs can similarly exist in
dilute, weakly interacting state, but also that their mutu
interactions are stronger than between vortex pairs. As
will see below this characteristic affects the thermodynam
of monopoles relative to vortices considerably. We remark
passing that the leading interaction between monopole p
apart from polarization inner products, behaves in 3D as
Coulomb potential. The Coulomb gas in 3D has a transiti
associated with the familiar process of ionization, which i
smooth analytical crossover. In terms of monopole pairs
transition would occur between a phase of free pairs gas
another where monopole pairs become bound to form c
ters. If it occurs, we may then expect that this monopole p
transition will not lead to critical~i.e., nonanalytic! behavior.

To estimate the free energy of a pair of defects we m
finally estimate its entropyS5 ln(V), whereV is the number
of states of the pair.V is proportional to the surface of th
D21 sphere of radiusl, i.e., the number of configurations
pair can take when rotated around its center of mass.

Then the single-pair free energy in arbitrary dimensionD
is

FD52~ l !.Ec1aDw0
2ln~ l !2TbDln~ l !,

FD.2~ l !.Ec1aDw0
2l D222T~D21!bDln~ l !, ~7!

whereEc accounts for the total core energy of the two d
fects in the pair andaD andbD are geometrical dimension
less constants dependent on the number of spatial dim
sions.

We emphasize that in these considerations we negle
the effects of other defect pairs. Qualitatively these will r
duce the free energy of the new pair relative to the ab
estimates, as they will tend to orient themselves in orde
~partially! screen the new charges. Thus Eq.~7! should be
thought of as an overestimate.

The free energy of the pair gives us a qualitative meas
of its probability in equilibriumP( l )}e2F( l )/T. We will ex-
plore this relationship further in Sec. III. For now we no
that for D52 both the energy and entropy terms beha
logarithmically with l and the overall sign of the free energ
for large pairs depends on the temperature, as noticed
Kosterlitz and Thouless@18#. In the low-T regimeF grows
with charge separation, leading to the suppression of la
pairs. For high temperatures the entropy term is domin
and large pairs have negative free energy. This suggests
existence of a high-T phase characterized by the unbindin
of defect-antidefect pairs and the production of free charg
This is the essential idea behind the Kosterlitz-Thoul
mechanism for the O~2! 2D transition.

For higher dimensionsD.2 the energy term dominates a
large l for all temperatures and large pairs always rem
7-3
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exponentially suppressed. This simple argument sugg
that there is no unbinding topological transition forD.2 in
global models and that defects remain tightly bound for alT.
In order to destroy this picture it is necessary that the beh
ior of the bare energy and/or number of configurations wil
would change due to interactions with other defect mu
poles. Such behavior is not seen in the Kosterlitz-Thoul
transition where the effect of other pairs softens the fi
modulusw0 ~the superfluid density or spin wave rigidity!,
leading to a renormalized value of the transition tempera
but not to a different kind of transition. In Eq.~7! we have
taken the pair energy to be determined by a simple cutof
the single-charge total energy~2!. Our conclusions would
remain unchanged if as suggested in@19# for D.2 the inter-
action becomes linear as the field’s interacting core collap
into a string connecting the two charges in the pair. T
entropy term would still be dominated by the interaction e
ergy in the same way as forD53.

Thus we have reached the conclusion that no unbind
topological transition should ever occur forN5D.2. We
put this expectation to the test in Sec. III, where we stu
comparatively the thermodynamic behavior of both vortic
in 2D and global monopoles in 3D.

We devote the remainder of this section to a few ad
tional remarks about the applicability of the free energy c
siderations of defect pairs to more general circumstances
interesting limit is that of systems that remain disordered
to topological configurations down toT50. In the class of
models of Eq.~1! only the case of theN51lf4 theory ~or
the Ising model! in 1D has this property, due to the presen
of kinks ~or domain walls!. In gauge1Higgs field theories
the physical properties of topological solutions change ra
cally because the phase gradients, which dominate the e
getics of global defects, become pure gauge transformat
and carry therefore no energy. This property is a direct re
of the Higgs mechanism. The phase gradients correspon
Nambu-Goldstone modes, each associated with a gene
for the remaining unbroken symmetries. In the Higgs mec
nism these massless modes are ‘‘eaten’’ by the gauge fi
which in turn acquires a mass. Thus the total energy of ga
defects is concentrated in their cores and falls off expon
tially with distance. Then gauge topological charges inter
via a short-range potential, in contrast to global defects. T
interaction energy can typically be neglected or treated ef
tively, as a change of the core energy, in our thermodyna
estimates.

By repeating the free energy argument with core ter
only we see that the entropy contribution is dominant for
temperatures, for large separations inD>2. This implies that
for large enough separation defect-antidefect pairs are
ways likely fluctuations and suffer no Boltzmann suppr
sion down toT501. This ‘‘condensation’’ of free topologi-
cal excitations can explain striking properties of non-Abel
gauge theories@21#. The thermodynamic spectrum of the
models should then be characterized by the existence
dilute gas of free defects at low temperatures. The numer
verification of this expectation is presently the subject
intense research. Hints of this behavior have recently b
found numerically; see, e.g.,@22#, for the case of a SU~2!
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lattice-gauge theory in 3D, which possesses ’t Hoo
Polyakov magnetic monopoles—the direct analogs of
global monopoles in Eq.~1! for N5D53.

III. CHARGE CLUSTERING AND THE KOSTERLITZ-
THOULESS TRANSITION

As outlined in Sec. II the behavior of a system of charg
with logarithmic interactions in 2D~the 2D Coulomb gas! is
well known, underpinning the topological transition in th
O~2! 2D model. In this section we develop diagnostics th
allow us to measure, in numerical studies of the equilibriu
partition function, the critical properties of topological poi
charges. Later we will use the Kosterlitz-Thouless behav
as the benchmark for a charge unbinding transition ofN
5D53 monopoles.

Rather than using a discretized two-dimensional vers
of the Hamiltonian in Eq.~1! we chose to study the 2DXY
model which belongs to the same universality class. T
choice has the advantage that theXY model thermodynamics
has been extensively studied, both analytically and via lar
scale numerical simulations. Consequently its critical pro
erties are well known quantitatively, including dimensionf
quantities such as the Kosterlitz-Thouless transition temp
tureTKT and the temperature at which the specific heat pe
TCV .

The XY model consists of a set of two-dimensional un
length spins with nearest-neighbor interaction. The Ham
tonian is given by

H@$s%#52J(
( i j )

si•sj , ~8!

where the sum is over all pairs of nearest-neighbor sites
we takeJ51.

All quantities below were obtained via standard Mon
Carlo generation of large ensembles on a lattice of size 12.
For each temperature we obtained a set of 2000 indepen
configurations, from which we measured global properties
the vortex population. Local quantities not involving use
time-consuming cluster algorithms were averaged over la
ensembles. The vortex content of each field realization
determined by identifying integer spin windings around t
lattice plaquettes. The values for the two characteristic te
peratures,TKT50.89 andTCV51.03, were obtained from the
literature ~see, e.g.,@23–25#! and are confirmed below. In
particular we checked that the specific heat peaks atTCV
within statistical error.

Figure 1 shows the temperature-dependent density of
tex pairsrvv̄(T) defined as the fraction of lattice plaquett
occupied by a positive charge. Note that although the to
vortex densityrvv̄(T) increases with temperature it does n
show a clear change of behavior at eitherTKT or TCV . This is
not surprising since the system does not undergo a sec
order phase transition, and the critical singularities are m
weaker in nature. In particular the properties of a few la
vortex pairs, crucial for the onset of phase disorder,
masked inrvv̄(T) by the existence of many more small pair
7-4
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In order to see signs of the unbinding we must study
properties of the vortex population in greater detail.

To achieve this we must deal with the ambiguity involv
in grouping vortices in pairs. To overcome this problem
the most general way possible we choose to group the v
ces in each field realization into clusters, defined in terms
an adjustable length parameterl cl . Vortices or
antivortices—we do not distinguish between the two
separated by less thanl cl are collected in the same cluste
Thus, each cluster consists of the set of vortices and anti
tices that lie within a distancel cl of at least another elemen
of the cluster.

The cluster decomposition is achieved efficiently by a
plying a generalization of the Hoshen-Kopelman algorith
@26#, developed originally for studies of percolation.l cl is
successively increased, starting from the lattice spacing,
smallest length scale in the problem. For eachl cl we measure
a set of cluster properties. In particular the topological cha
properties of clusters are ideal diagnostics in the search
signs of a charge unbinding phase transition.

As a consequence of our choice of periodic boundary c
ditions the sum over the charge of all clusters in the volu
is always zero. To quantify the typical charge of a cluster,
define, for each choice ofl cl , a mean cluster chargeQcl .
Here Qcl results from adding up the absolute value of t
chargeQ of each cluster in a given realization and dividin
the result by the total number of clusters, i.e.,

Qcl5
1

Nclusters
(

clusters
uQu. ~9!

Figure 2 showsQcl( l cl) for two different values of the tem

FIG. 1. The plaquette density of vortex pairs for the 2DXY
model. Error bars denote standard deviation over 4000 indepen
field realizations. Both the Kosterlitz-Thouless temperatureTKT and
TCV , at which the specific heat peaks, are shown. No signs
critical behavior are apparent in the total vortex density.
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perature aroundTKT .
The behavior ofQcl at low temperatures can be unde

stood in terms of the properties of a dilute distribution
vortex-antivortex pairs. A vortex and an antivortex will be
the same cluster if their separation is smaller than the cho
l cl . If the distance between different pairs is large, all pa
with separation smaller thanl cl will be in neutral clusters. In
this case the charged clusters will consist only of sin
charges from pairs with separation larger thanl cl . With in-
creasing clustering length,Qcl should then decrease, reac
ing zero whenl cl becomes of the order of the largest pair
the sample. At this length all clusters become neutral.
then defineLneutral by Qcl(Lneutral)50, a measure of the siz
of the largest pairs at a given temperature.

The top plot in Fig. 2 illustrates the typical behavior
Qcl just belowTKT . Qcl( l cl) has a long tail for large value
of the clustering length~up to l cl.20), signaling the pres-
ence of large pairs. For lower temperatures,Qcl decays
faster. In Fig. 3 we plot the variation ofLneutralwith T. Up to
the Kosterlitz-Thouless temperatureLneutral increases as pair
with larger and larger separations are produced.

According to the standard picture of the KT transitio
aboveTKT free charges appear in the system. Their prese
affectsQcl( l cl) because a population of free vortices chang
the charge of otherwise neutral clusters. Thus we can
longer expectQcl( l cl) to decay monotonically. In fact we
observe that above the transitionQcl displays a peak at a
finite value of the clustering length, which we define
Lpeak. With increasing temperature the value ofLpeak de-

nt

f

FIG. 2. Cluster chargeQcl vs clustering lengthl cl for a tempera-
ture slightly below ~top plot! and above ~bottom plot! the
Kosterlitz-Thouless temperature, in the 2DXY model. Below the
transition the mean charge decreases monotonically withl cl . The
clustering lengthl cl for which Qcl50 increases asT→TKT

2 . For T
.TKT , Qcl peaks at an intermediate value ofl cl before decaying to
zero. Standard deviation error bars of order of the results not sh
for clarity.
7-5
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creases and the height of the peak increases. This is the r
of a higher vortex density and, among them, more f
charges. The increase in the density of free vortices a
reduces the mean distance between them and moves the
to lower l cl . This behavior has the important characteris
thatLpeakdiverges asTKT is approached from above. Highe
free charge densities also lead to a decrease inLneutral above
TKT .

The behavior of bothLneutralandLpeak is shown in Figs. 3
and 4, respectively. Both quantities show clear signs of c
cal behavior atTKT , although the behavior ofLneutral is
plagued by higher statistical uncertainty.

Note that pair unbinding is not the only way a set of po
charges may display a change of properties. In genera
temperature is increased two concurrent effects take pl
The first is that pairs with larger separation and higher in
action energy are nucleated. The second is the productio
more pairs at small separations. Depending on the inter
between these two trends a situation may be reached w
the distance between different pairs is of the same orde
the separation within each pair. In this case the system
comes dense~it percolates! and pairs become indistinguish
able.

In order to determine the temperature at which pair p
colation occurs in the 2DXY model we measured, for eac
configuration, the value of the clustering length at which
clusters become neutral^ l max& as well as the minimuml cl ,
for which all vortices in the sample fall within the sam
cluster, Lperc. Note that ^ l max& differs from Lneutral in the
sense that̂l max& is a thermal average of the size of the larg
pair in each sample, whereasLneutral is the size of the larges
pair in all samples in our ensemble. In this sense the pea
^ l max& reflects a maximal production of large pairs where

FIG. 3. The smallest clustering lengthLneutral at which all vortex
clusters are neutral, vsT, in the 2DXY model. For low densities
Lneutralcorresponds to the separation of the largest pair in the~finite!
ensemble.
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peak inLneutral corresponds to the production a single ve
large ~presumably infinite in the infinite-volume limit! pair.

For dense vortex systems, where there is no positive
relation between vortices and antivortices,^ l max&5Lperc. This
limit must be reached at high temperature as is indeed sh
in Fig. 5. Moreover, we see that forT,TCV the length
^ l max&,Lperc. This includes the vicinity ofTKT , where pairs
remain dilute enough that they can be identified. The den
threshold where the vortex system becomes dense iT
.TCV , but a precise identification would demand care
finite-volume scaling. In any case we also see that the
proach to a dense state occurs seemingly continuously, w
out any clear signs of critical behavior. In this sense it m
not be possible to associate it with a particular value ofT.

We have now used cluster decomposition methods app
to the vortex population to characterize its critical properti
We found results in good agreement with previous, m
limited, numerical studies@25# and with the theory. As the
temperature is increased free vortices first appear atTKT and
are maximally produced approximately atTCV , where the
vortex system becomes dense and the concept of a vo
pair ceases to be meaningful.

IV. MONOPOLES IN THE 3D O „3… MODEL

A. Thermodynamics of the model

In this section we apply the tools developed in the cont
of the Kosterlitz-Thouless transition to a 3D scalar fie
theory with O~3! symmetry. Our analysis will be based on
discretized version of alf4 theory, Eq.~1!. We start by
establishing its thermodynamic properties. In particular

FIG. 4. Length for cluster charge peak in the 2DXY model. For
T.TKT , the length at which the cluster charge function peak
creases withT due to the production of higher densities of bou
and unbound pairs. BelowTKT the mean charge decreases withl cl ;
we defineLpeak5` in this case.
7-6
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ROLE OF POINTLIKE TOPOLOGICAL EXCITATIONS . . . PHYSICAL REVIEW E 65 066117
will be interested in determining the value of the critic
temperatureTc at which the model displays a second-ord
phase transition.

In order to generate a Boltzmann distributed ensemble
field configurations we have evolved a second-order in t
Langevin field equation~see@27# for more details!. For our
purposes this is equivalent to using a Monte Carlo or clu
algorithm. The advantage of the Langevin equation is tha
can be easily generalized for time-dependent systems.
future publication the equilibrium states generated in t
way will be taken as initial conditions for real time out-o
equilibrium studies@28#.

The procedure is as follows. We evolve the thre
component real scalar field in time with the equation of m
tion

~] t
22¹2!f i2m2f i (

j 51,3
f j

21lf i1hḟ i5G i , ~10!

where i P$1,2,3%. We discretize this scheme using
staggered-leapfrog method with time stepdt50.04. The ran-
dom forceG i(x,t) is a Gaussian distributed field with tem
peratureT as determined by the fluctuation-dissipation the
rem.G i is characterized by

^G i~x!&50, ^G i~x!G j~x8!&5
2h

T
d i j d~x2x8!. ~11!

The value of the dissipation coefficienth does not influence
the equilibrium results and in our simulations we choseh
51.0 to ensure rapid convergence. The lattice spacing

FIG. 5. Mean clustering length for neutral clusters^ l max& in the
2D XY model, error bars corresponding to standard deviation o
2000 field samples. The dashed curve shows the clustering le
for which all charges are gathered in a single cluster, standard
viation of the same order as for^ l max&, not shown for clarity. When
the two curves meet nearTCV the system becomes dense.
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set todx50.5 and the model parameters chosen to bem2

51.0,l51.0. We used a computational domain withL
5100 points per linear dimension. Both local and glob
observables were measured over at least 200 indepen
field realizations.

As an order parameter we have used the norm of
spatially averaged field̂ufVu&, defined as

^ufVu&5KA(
i 51

3 S 1

VEV
dxf i~x! D 2L , ~12!

which is analogous to the magnetization in spin models.
Figure 6 shows the temperature dependence of^ufVu&.

For T.Tc ,^ufVu& vanishes. Near but belowTc , the order
parameter displays universal critical power-law behavior

^ufV~T!u&5BS Tc2T

Tc
D b

, b.0, ~13!

which is the analog of the magnetization density in sp
models. Hereb is the universal critical exponent associat
with the behavior of the magnetization belowTc and is not to
be confused with the inverse temperature elsewhere. By
ting the numerical values for̂ufVu& to Eq. ~13! we are able
to measure the critical temperature obtainingTc50.41. This
sets a reference point, the most important scale in the sys
We also compute the critical exponentb50.36. This is in
good agreement with both recent theoretical and large-s
Monte Carlo estimates for the critical exponent which gi
b50.366(2) andb50.3685(11), respectively~see, e.g.,

r
th
e-

FIG. 6. Order parameter for the 3D O~3! model and correspond
ing power-law fit in the critical region. The temperature has be
rescaled to (T2Tc)/Tc settingTc50.41 as determined from the fit
Error bars denote standard deviation over an ensemble of 200 i
pendent field realizations.
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ANTUNES, BETTENCOURT, AND KUNZ PHYSICAL REVIEW E65 066117
@29# and references therein! and provides a check on th
accuracy of our numerical setup.

B. Monopole statistics

We are now ready to analyze the properties of the eq
librium global monopole population. For each field realiz
tion monopoles and antimonopoles are identified by mea
ing the three-dimensional winding number of the fie
around each cubic lattice cell. The algorithm used is ba
on a higher-dimensional generalization of the geodesic
traditionally used for identifying strings in O~2! theories
@30#. Details of this procedure are given in Appendix B.

Figure 7 shows the density of monopole-antimonop
pairs ~defined as the total positive charge in the compu
tional domain divided by the number of lattice sites! versus
temperature. The total monopole densityrmm̄ increases
smoothly withT and its derivative peaks at the critical poin
signaling the second-order phase transition. AboveTc the
rate of increase diminishes and the total pair density c
verges slowly to approximatelyrmm̄→0.17 asT→` ~not
shown!.

Figure 8 shows a log-linear version of Fig. 7 illustratin
how over nearly the whole temperature range belowTc ,rmm̄
is well fit by an exponentialrmm̄5Ae2E0 /T. Only very near
the critical point does the fit fail to follow the density curv
accurately. This behavior suggests that the increase in
total monopole density is dominated by the creation of la
numbers of minimum-size pairs, each with typical ene
E0.2.0.

An understanding of this behavior can be obtained
evaluating the partition function for monopole pairs und
certain simplifications. If we assume pairs are independ
i.e., if we neglect pair-pair interactions and volume exclus
effects, the partition function for a pair is

FIG. 7. The mean plaquette density of monopole pairsrmm̄ vs
reduced temperature for the 3D O~3! model; error bars as in Fig. 6
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Z~T!511(
pairs

e2Ep /T, ~14!

where the sum is taken over all single-pair internal config
rations; i.e., it excludes translational modes. We take the
energy to be of the form

Ep5Ec1s l , ~15!

wherel is the monopole-antimonopole separation in units
lattice spacing. In the continuum the simplest way to co
pute Z(T) would be to use the approximate expression
the free energy, Eq.~7!. While this should be valid for large
values of the pair size, such an evaluation of the numbe
states breaks down relative to that on the lattice, espec
when l becomes of the order of the lattice spacing. Since
expect the monopole population to be dominated by sm
pairs, the continuum approximation would be a significa
source of error. To circumvent this problem we calculate
partition function by evaluating numerically the sum in E
~14! over all possible lattice configurations of a pair wi
fixed center, for a given choice ofEc ands. In this way the
number of pair configurations on the lattice and, therefo
the entropy are calculated exactly.

Monopole thermodynamic averages can be easily ev
ated fromZ(T). The total pair density per site is given by

rmm̄~T!5
Z~T!21

Z~T!
. ~16!

FIG. 8. Fit for the mean density of monopoles toAexp
(2E0 /T); error bars as above. In the low-temperature regime
obtain A57.060.6 andE051.9860.02, fitting the first 23 data
points. BelowTc the density displays near exponential behav
down toT50.
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ROLE OF POINTLIKE TOPOLOGICAL EXCITATIONS . . . PHYSICAL REVIEW E 65 066117
By allowing Ec and s to take arbitrary values, we fit th
predicted pair density to the numerical data. Ax squared fit
leads to estimated values of the interaction parameter
Ec.0.26 ands.1.71.

In Fig. 9 we compare the monopole densityrmm̄ obtained
in this way to the numerical data and to the simple expon
tial fit discussed before. Clearly taking into account pa
with variable separation improves the estimate leading
precise results up toTc . It remains true, however, that th
monopole thermodynamics is always dominated by v
small pairs. Using the fit results forEc ands we obtain the
following energies for the smallest pairs allowed on the l
tice: E(1)51.97,E(A2)52.68, andE(A3)53.22. Consider-
ing the contribution of the first three terms in the partiti
function already leads to a very reasonable approximatio
Z(T):

Z~T!5116e21.97/T112e22.68/T18e23.22/T. ~17!

This givesrmm̄(Tc)50.07, in good agreement with the me
sured value~the integer pre-factors are the number of diffe
ent lattice configurations for a pair at these separations!.

The value measured fors is considerably lower than th
one obtained from the single-monopole classical estimat
Sec. II. Evaluating Eq.~2! exactly we have for the single-pa
energyEp5Ec14pm2/l3 l , which leads tos52p in lat-
tice spacing units (dx50.5). The difference between th
classical value ofs and its value inferred from fitting the
thermodynamic monopole density is a consequence of st

FIG. 9. Numerical data for the total pair density and correspo
ing fits nearTc ; error bars as in Fig. 7. The energy varying the
retical curve~solid line! was fitted to the 18 lowest-temperatu
points ~not shown in the plot! up to (T2Tc)/Tc520.25. The
simple exponential fit~dashed line! fails to follow the numerical
curve up toTc , indicating relevant production of higher-energ
larger separation pairs in the critical region. The varying energy
on the contrary matches the data well up to the critical point.
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medium-dressing effects, resulting both from the influence
other monopole pairs and from interactions with the sp
wave degrees of freedom.

In any case the unequivocal exponential behavior of
total density below the critical point implies thats<2. The
quality of the fit usings51.7 and its success in predictin
other features of the data~see below! suggest that one shoul
not place exaggerated confidence in the classical sin
monopole result.

In a previous publication@31# two of us predicted the
value of the defect density at criticality for O(N) theories.
This calculation assumes that fluctuations atTc are Gaussian,
with their scale-invariant connected two-point function ch
acterized by the universal critical exponenth, the anomalous
dimension. Using the value ofrmm̄50.17 at infinite tempera-
ture as a normalization~see@31# for details! leads to a pre-
dicted rmm̄(Tc).0.07 for O~3! in 3D, in good agreemen
with the present numerical measurements.

A similar calculation of the temperature dependence
the vortex pair density can be done for the 2DXY model. As
in the monopole case, the low-temperature Monte Carlo d
is reasonably well fitted by an exponential. Assuming a p
energy of the formEp5Ec1s ln(l) and calculating the par
tition function as before, the prediction can be improv
leading to good results up toTCV ~see Fig. 10!. The single-
exponential fit for lowT givesE0.7.2 which compares wel
with a previous result of 7.5, measured by Gupta and Ba
@23#. The difference is probably due to our fit being based
low-T data points only. In the same article@23# Gupta and
Baillie also obtained a different exponential fit in the tem
perature region betweenTKT andTCV with a higher value for

-

t

FIG. 10. Same as Fig. 9 for the 2DXY model. The theoretical
curves were obtained by fitting the low-temperature data up tT
50.75, whereas the simple exponential~dashed line! fails to follow
the observed density aboveTKT . The curve obtained from the par
tition function, which includes pairs with all separations, match
the data well up toTCV .
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ANTUNES, BETTENCOURT, AND KUNZ PHYSICAL REVIEW E65 066117
E0. Using the form~15! we are able to fit both temperatur
regimes obtaining thex squared resultsE0.6.7 and s
.2.9.

Following in the footsteps of the 2D charge cluster ana
sis we now turn to the properties of monopoles in the O~3!
3D theory. Figure 11 showŝl max& andLperc in terms of the
reduced temperature in the critical region. The monopole
semble becomes dense when the two length scales are
parable,̂ l max&.Lperc, and it is no longer possible to identif
isolated pairs. This happens at (T2Tc)/Tc.20.25, the tem-
perature at whicĥl max& peaks, well belowTc . This behavior
stands in striking contrast to that of vortices in the 2D ca
~see Fig. 5!, where the vortex gas percolated only in t
exponentially disordered phase atT5TCV.TKT .

It is important to realize that this behavior of monopol
is not in contradiction with maintaining long-range order
to Tc . The system of monopole-antimonopole pairs can
come dense without disordering the field over large d
tances. This can be understood by considering a domain
radius much larger than the maximal pair size and is es
tially the earlier result of Bitar and Manousakis@17#. Since
the total field winding in the domain’s surface is given by t
total charge in its interior, its value will be zero. That i
finite pairs will not affect the long-range behavior of the fie
on scales larger than their size; only unbound charges
lead to the breakdown of long range order.

The proliferation of small pairs in the three-dimension
case is made possible by the fact that the core energy o
monopole is small when compared with the interaction
tential. This leads to production of large densities of sm
pairs, while large pairs remain strongly suppressed by

FIG. 11. Mean clustering length for neutral clusters~error bars
correspond to standard deviation over 200 field samples! and per-
colation length~dashed curve, standard deviation error bars of
same order as for̂l max&, not shown for clarity! for the 3D O~3!
model. The system becomes dense well below the critical temp
ture when the two quantities become comparable.
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fast growing linear interaction term. As a consequence
system percolates mostly due to a high-density populatio
small pairs at a temperature where large pair configurati
have an exponentially negligible contribution to the therm
dynamics.

To investigate this behavior we can use our approxim
partition function to calculateN( l ), the density of pairs of
size l, as

N~ l !5Z21~T!n~ l !e2Ep( l )/T, ~18!

wheren( l ) is the total number of configurations for a pair
size l. This expression can be readily evaluated numerica
We then useN( l ) to estimate the size of the largest pair in
computational domain by finding the value forl such that
N( l )3LD.1.0, whereL is the linear size of the computa
tional volume. That is, we demand that in each compu
tional volume there should be on average one pair of ma
mal size. This length scale corresponds to^ l max&. The value
of ^ l max& estimated in this way is plotted against temperat
for both models in Fig. 12.

In order to calculate the percolation temperature in t
approximation we must estimateLperc. This can be done by
assuming that the typical distance between pairs is of o
of 1/r (1/D), wherer denotes eitherrvv̄ or rmm̄ depending on
the dimension. This implies that we will have percolatio
when ^ l max&.1/r (1/D). Figure 12 shows the temperature d
pendence ofLperc, estimated as 1/r (1/D), using the param-
eters from the previous density fits. The point where the t

e

a-

FIG. 12. Theoretical prediction for the temperature-depend
mean maximal pair sizêl max& and pair separationLperc, for the 2D
XY model~left! and the 3D O~3! model~right!. At the temperature
where the two curves cross, the system becomes dense and it
longer possible to distinguish individual pairs. The steplike appe
ance of̂ l max& in the right plot is due to lattice discretization effec
on l, which are apparent due to the small size of the monopo
antimonopole pairs.
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ROLE OF POINTLIKE TOPOLOGICAL EXCITATIONS . . . PHYSICAL REVIEW E 65 066117
curves meet defines the percolation temperature where
charge ensemble becomes dense. The values obtained
reasonably well with the data. For the 3D O~3! case we find
the percolation temperature to be (T2Tc)/Tc.20.2 with
pairs of maximal size 4, compared to (T2Tc)/Tc.20.25,
with the largest length of around 5.5 from the numeric
results. For theXY model we obtainT.0.96, slightly below
TCV , but still clearly in the exponentially disordered pha
and l .10, which coincides with the numerical result for th
mean size of the largest pair per box at the percolation t
perature.

V. CONCLUSIONS

We started this paper by using single-defect-pair free
ergetic arguments to predict that no pair unbinding transit
should occur for point defects in O(N) models with global
symmetries forN5D.2. We then verified this prediction b
comparatively studying the defect thermodynamics of vo
ces and global monopoles occurring in typical configuratio
drawn numerically from canonical ensembles of the O~2!
model in 2D and an O~3! field theory in 3D.

We measured in great detail the behavior of vortic
across the Kosterlitz-Thouless transition and found it
agreement with the expectations of the theory, which pred
the appearance of free vortices atTKT . In the O~3! model in
3D isolated single monopoles never occur. Instead the mo
pole ensemble transits from a dilute pair phase at low te
peratures, to a dense monopole gas, through the nucleati
large numbers of tightly bound pairs belowTc . We have
seen that this behavior is consistent with qualitative expe
tions based on the single-monopole pair energetics, whic
characterized by a light core and a linearly confining int
action potential. Our quantitative treatment shows, howe
that the bare parameters in the monopole potential—
monopole core energyEc and string tensions—are signifi-
cantly renormalized by thermal medium effects.

The thermodynamic behavior of global monopoles is c
sistent with both a ~noncritical! topological-charge
conductor-to-insulator transition and the absence of lo
range phase disorder at temperatures belowTc . Global
monopoles in 3D do not behave like Coulomb charges,
rather more like static quarks, since they interact via a
early confining potential. The conductor phase in this c
cannot be reached by the nucleation of truly free isola
charges, as in the Kosterlitz-Thouless transition. It inst
results from the fact that in a dense monopole gas cha
can move freely by hopping from a nearby anticharge
another. Because local charge neutrality persists to all fi
temperatures@17#, the dense monopole gas does not lead
long-range disorder of the field phases~spins!. Long-range
phase fluctuations must therefore arise from different deg
of freedom, the spin waves. This is indeed the renormal
tion group picture of the transition, which correctly predic
all universal critical behavior. From this perspective we co
clude that monopole excitations, although contributing
short-range disorder in the O~3! model in 3D, are incapable
by themselves, because of their enslaving energetics, of
ducing long-range disorder at any finite temperature. Thi
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not to say that their disordering influence can be comple
neglected. Their effects must generate a short-distance
trivial quantitative contribution to critical exponents, thu
making the universality class in their absence different@14#.

In this way we must conclude that there is a nontriv
interplay between monopoles and spin waves in the O~3!
model and that the detailed nature of the critical behavio
changed if either are suppressed.

The generalization of these qualitative results to arbitr
N5D.3 is immediate. The potential between defects b
comes steeper and steeper as a function ofl, and topological
excitations, just like monopoles in 3D, will never unbind.
this way topological excitations do indeed become more
more irrelevant, asN increases, for the physics of larg
length scales that characterizes thermodynamics in the c
cal domain of O(N) models.

We also see from this perspective that upon cooling
system most topological fluctuations will annihilate with
nearby antidefect, leading to small and quickly disappear
populations of topological defects. From this perspect
global topological monopoles formed at a cosmologi
phase transition present no real danger of creating a ‘‘mo
pole problem.’’

We conclude by invoking a complementary view of th
phase transition in O(N) models. There is clear evidenc
~and mathematical proofs in certain particular cases! that
criticality in O(N) scalar models is equivalent to the perc
lation of so-called Wolff spin clusters@32#. Wolff clusters are
built by forming bonds among adjacent spins according t
temperature dependent probability. Because of this prob
listic assignment, Wolff clusters are subsets of the set
clusters formed by associating all adjacent spins with
same orientation. Clusters formed by considering spins w
the same orientation, without this probabilistic restrictio
percolate belowTc . It is the typical size of these latter ‘‘con
ventional’’ clusters that is associated with defect densiti
according to the Kibble-Zurek@10,11# theory of defect for-
mation. Our observation of monopole percolation belowTc
is compatible with this scenario. The interesting questio
testing this hypothesis and determining the detailed relat
ship between Wolff clusters and topological excitations
criticality will be left for future work.
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APPENDIX A: ENERGETICS OF LINE DEFECTS
IN D DIMENSIONS

The free energy arguments of Sec. II can be generalize
extended topological defects. In this appendix we consi
the case of line defects.
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ANTUNES, BETTENCOURT, AND KUNZ PHYSICAL REVIEW E65 066117
Let us look first at the case of one-dimensional defe
N5D21. For a stringlike object the core energy is prop
tional to its lengthl, and the entropy can easily be calculat
assuming that it behaves like a random walk. The numbe
different configurations for a closed random walk in a cu
D-dimensional lattice is given by

V5~2D ! l~4p l !2D/23 l 21. ~A1!

The first two terms count the number of possible closed r
dom walk loops withl steps and the final factor takes in
account the arbitrariness in the choice of initial point in t
loop. We see that the entropyS5 ln(V) grows linearly withl.
The free energy is then~omitting dimensionless constants!

F~ l !.s l 1EI1TS D

2
11D ln~ l !2 ln~2D !Tl, ~A2!

wheres is the string tension andEI( l ) the interaction energy
for the loop. In generalEI is a function not only of the string
length but also of its detailed shape. We start by conside
the case when the interaction energy can be neglected. T
we see immediately that the system will undergo a ph
transition above a certainT, characterized by the prolifera
tion of long strings. This is because both the entropy a
core energy have the same dependence onl, as was the case
in the Kosterlitz-Thouless transition.

This set of approximations gives a reasonable descrip
of theD52 Ising model, where there is no long-range int
action between strings and probably also of strings in ga
theories in any dimension. In contrast to the case of mo
poles, where the pair interaction was responsible for the c
fining phase at lowT, here it is the core energy of the strin
that keeps it at a finite length.

The interaction energy is hard to estimate and depend
general on details of the underlying model as well as
particular configurations. We can make a rough estimate
assuming that the string remains a random walk and co
quently that the distance between two points on the strin
of order of l 1/2. Then if two distant string segments intera
as pointlike defects in an O(N21),D21 theory, the loop
energy will be given by

EI~ l !. l 3 l (D23)/2, D.3,

EI~ l !. l ln~ l !, D53. ~A3!

Clearly for D.3 the interaction term dominates over th
entropy for all T, indicating the absence of a proliferatin
phase. The marginal case, forD53, is harder to judge in this
approximation, since the correction to the linear interact
is only logarithmic. In reality we have good evidence@33#
that for 3D O~2! the string tension goes to zero atTc and
there is a percolation transition in the network, very close
the critical point, at which long strings spanning the volum
appear.

For higher-dimensional defects the calculation of the
tropy becomes much harder. For example surfaces ca
topologically complicated, exhibiting holes and handles. T
general trend seems to suggest that for fixed spatial dim
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sion, the entropy of a typical defect configuration decrea
with N. Since the interaction energy increases with the nu
ber of field components, we expect that for anyD and above
a certainN the free energy will always be dominated by th
interaction component and proliferation of defects is proh
ited at all finite temperatures. ForD53, for example, strings
proliferate in the high-T phase forN52 but no unbinding of
charge pairs occurs forN53.

APPENDIX B: DEFINING WINDING CHARGE
ON THE LATTICE FOR GLOBAL THEORIES

We identify O~3! monopoles in a 3D cubic lattice by gen
eralizing the well-known ‘‘geodesic rule’’ used in mos
cosmic-string lattice-based simulations@30#.

We count the winding of the field vectors around ea
unit cell in our grid by using a ‘‘smallest-area’’ assumptio
To this end, we triangulate the faces of each lattice cube
then map the O~3! field vector at all corners onto the un
sphere~the presence of a monopole depends only on
orientation of the field, not on its norm!. For each triangular
element in the cube’s surface this defines a solid angle on
unit sphere~see Fig. 13!. The sign of the solid angle is take
according to the handedness of the corners. Its valueQ can
be calculated thanks to a formula that relates the area of
spherical triangle, defined by three vectors on a unit sph
to the angles between the geodesic sides of the triangle

uQu5a1b1g2p. ~B1!

Summing the solid angles corresponding to all the 12
angles in the cube’s surface, we obtain(Q54pn wheren is
an integer taken to be the charge of the monopole inside
lattice cube.unu has an upper bound of 5 but in practice w
rarely observe charges larger than 2~which we interpret as
two coincident unit charges!.

FIG. 13. The monopole charge in a cubic cell is identified
projecting the field vectors at every corner onto a unit sphere. E
triangle on the square faces cube is thus mapped onto a sphe
triangle ~the one with the smallest surface is chosen!. The sum of
the surface of all these triangles, divided by 4p, is then taken as
defining the monopole charge inside the cubic cell.
7-12
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