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Role of pointlike topological excitations at criticality: From vortices to global monopoles
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We determine the detailed thermodynamic behavior of vortices in {B¢ €@alar model in two dimensions
(2D) and of global monopoles in the(8 model in 3D. We construct numerical techniques, based on cluster
decomposition algorithms, to analyze the point defect configurations. We find that these criteria produce results
for the Kosterlitz-Thouless temperature in agreement with a topological transition between a polarizable
insulator and a conductor, at which free topological charges appear in the system. For global monopoles we
find no pair unbinding transition. Instead a transition to a dense state where pairs are no longer distinguishable
occurs aff < T, without leading to long-range disorder. We produce both extensive numerical evidence of this
behavior as well as a semianalytic treatment of the partition function for defects. General expectathidns for
=D>3 are drawn, based on the observed behavior.
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[. INTRODUCTION tions are known to dominate critical thermodynamic behav-
ior? In this article we investigate this question for point
The detailed understanding of the many roles played bylefects in ON) models inD dimensions, taking as a starting
nonperturbative topological excitations in the dynamics andoint the Kosterlitz-Thouless transition, i.e., the c&se N
thermodynamics of statistical models and field theories is=2. The successes of the renormalization group at charac-
one of the most fascinating and largely unresolved issues dérizing critical behavior irD >2 suggest that physics in the
many-body systems. critical region is dominated by perturbative excitatigepin
In the simplest Abelian gauge field theories vortices arevaves. In particular asN increases, mean-field descriptions
intimately connected with the existence of a superconductinppecome suitable. In this limit thermodynamic effects due to
state in type-ll materialgl]. Excitations carrying topological topological defects are totally unexpected. What then be-
numbers(instantons, monopoles, vortigeare also thought comes of the topological excitations? Do they disappear
to be the best candidates for an explanation of confinemeritom the spectrum as likely fluctuations, or do they still oc-
in non-Abelian gauge theori¢&]. In the context of statisti- cur but in a manner that does not lead to long-range disor-
cal models with global symmetries it has long been underder?
stood that topological excitations can lead to the onset of The answers to these questions are necessary underpin-
phase disorder at high temperatuf&3. Their presence in nings for a general picture of the behavior of topological
configurations in one spatial dimensi@D) in models with  excitations both in equilibrium and as seeds for the formation
local interactions down t@=0" prohibits, in fact, the es- of topological defects upon cooling. Current understanding
tablishment of long-range order at any finite temperatureof the formation and evolution of topological defefi®,11]
[4,5]. In dissipative dynamical systems the long-range disorin cosmology and in condensed matter requires the presence
der and temporal scaling present in the long-time limit ofin the disordered phase of fluctuations, which upon cooling
phase ordering kinetics can also be understood in terms afan result in long-lived topologicatiefects Familiar ex-
topological excitation$6,7]. amples are long vortex stringgosmic strings or well-
Several canonical examples illustrate the role of topologi-separated monopole-antimonopole pairs. If these configura-
cal excitations in bringing about phase transitigB8s3,9. tions are rare in thermal equilibrium, above the transition,
Among them the best known is the Kosterlitz-Thoul@s$)  their abundances will be very small and short lived upon
transition. At low temperatures the(®) model in 2D exhib-  cooling. Such behavior may have significant phenomenologi-
its algebraic long-range order, which would persist to allcal implications and shed new light on old questions such as
temperatures in the absence of topological excitations. Théhe monopole problem in cosmolo§¥2] or the planning of
advent of disorder at high temperatures is due to vortex exdefect formation experiments in condensed matter systems.
citations, which appear as free charges at the Kosterlitz- In this paper we study in detail the similarities and differ-
Thouless temperaturByy . ences between the statistical behavior of vortices in t® O
Recently, due largely to increases in computational powe2D model and of global monopoles in the 3@3Pmodel, in
and improved methods, many of these systems have becortigermal equilibrium. For reasons that we make clear in Sec.
available to direct quantitative study. This is particularly truell this step, betweeiN=D=2 andN=D =3, straddles the
of models with global symmetries, embodied to a large exboundary between a case where topological excitations drive
tent by O(N)-symmetric magnets or field theories. an order-disorder transitiofthe formej and a case where
An interesting question then is what happens as we protopological excitations may be expected to become thermo-
gressively stray away from cases where topological excitadynamically irrelevant, at least for the long-distance physics
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that is characteristic of criticality. slightly higher temperature, approximately where the specific

This problem has been investigated in several instances ineat peaks. Armed with this quantitative information of the
the past, leading to important insights, but a consistent picKT transition and the analytical arguments of Sec. Il, we
ture of the thermodynamics of global monopoles has yet t@nalyze, in Sec. 1V, the statistical properties of monopoles in
emerge. The strongest evidence for an important role playede O3) model in 3D. We find no unbinding transition as
by monopoles at criticality in the (3) model in 3D comes expected on energetic grounds alone, but still a percolation
from the study of modified partition functions, which include transition occurs at a temperature beldy. We develop
monopole suppression terfs3,14. Lau and Dasguptgl3]  Methods to describe the monopole behavior quantitatively
showed that the introduction of one such term, suppressingnd argue that the observed percolation transition can occur
all monopole fluctuations, results in the disappearance ofithout leading to long-range disorder of the order param-
critical behavior altogether. Later Kamal and Murtfg4]  eter. We thus establish the separation between the nontrivial
used a different monopole suppression term, which allowednonopole thermodynamic behavior and criticality. Finally in
monopole-antimonopole pairs with lattice space separatioeC. V we discuss our results in the larger context @¥)O
only. They found a new second-order transition, with expo.SCEuar theories ilD dimensions. We argue that the criteria of
nents different from those of the conventional3Duniver-  Sec. Il are sufficient to determine whether topological de-
sality class. Lau and Dasgupfta3] also claimed that at the fects undergo an unbinding transition.
critical temperature of the conventiona(3) model the tem-
perature derivative of the monopole denglpy/d T exhibitsa  1l. FREE ENERGY CONSIDERATIONS FOR O (N) POINT
divergence, which they argued would signal monopole- DEFECTS IN D DIMENSIONS
antimonopole pair unbinding. This claim was also taken up L , , )
by Huang, Kolke, and PolonylL5], who conjectured thatthe W& ca&n gain insight into the importance of topological
phase transition in the @) model would then be driven by €Xcitations in ON) models inD dimensions as vehicles of
monopole-antimonopole separation, in analogy with the vordisorder by estimating the free energy associated with new
tex unbinding that triggers the Kosterlitz-Thouless transitionPl €xcitations. Later we will specialize to two particular
in the O2) model in 2D. Later the evidence for a diverging €8S€s, those of vortices in 2D and of global monopoles in
dp/dT disappeared with a high precision cluster aIgorithm3D’ whos'e thermodynamics we investigate in detail in Sec.
study by Holme and JankiL6], who showed thatlp/dT III: '_I'he line of_argument usgd in this section follows_ the
behaves like the specific heat, which does not diverge.at  °'iginal reasoning by Kosterlitz and Thoulelss] in moti-
Moreover, Bitar and Manousakjd7] searched for unbound V&ting the topological transition in the 2RY model, with
monopoles by considering phase correlations along close@PPropriate generalizations. _
loops in space. They concluded that no such configurations -I;O be definite we consider a general N)¢symmetric
could be found, implying that the unbinding of monopoles}“f_’ theory in D spatial dimensions. The Hamiltonian is
plays no role in the critical thermodynamics of thg3p Written as
model inD=3. 1 N

Th|§ body of evidence paints a gomplex picture o_f the H[¢]=J dDX{_|V¢(X)|2+ S1e012= 7212, (O
behavior of monopoles at criticality in the(8 magnet in 2 4
3D. It suggests that while monopole degrees of freedom are
important in bringing about disorder with increasing tem-Where ¢(x) is an N-component real field and ¢|?
perature and contribute nontrivially to the physics of the = #(X)$'(X).
=3, D=3 universality class, they are not essential for the The ON) symmetry of Eq.(1) breaks spontaneously at
establishment of long-range disorder. In particular their below temperatures to O(—1), and the field acquires a non-
havior may not be critical at all &, . Thus, drawing analo- Z€ro expectation value. The degenerate set of minima lies on
gies with the Kosterlitz-Thouless transition may provide a@ Sy-1 sphere. It follows that the homotopy group
poor guide to their thermodynamics. mn-1(Sy-1) =Z, the group of integers, which implies that

The present paper is dedicated to elucidating some dpological solutions with integer charge exist in the spec-
these questions through a detailed comparative study of thigum of the theory. IrD=N dimensions these are point de-
critical behavior of monopoles and vortices in thg3D fects. The best know cases are the kipk domain wall in
Heisenberg magnet and tié=D=2 XY model, respec- D=N=1, the global vortex foD=N=2, and the global
tively. This article is organized as follows. In Sec. Il we monopole(or hedgehogin D=N=3.
review and extend standard free energetic arguments for These topological defects are classical static solutions;
point defects of @N) scalar models ifD dimensions. These i.e., they ardlocal) energy minima satisfyingH/5¢=0. In
arguments are both simple and very powerful in determining® dimensions point defects are radially symmetric solutions.
whether topological transitions can occur and in elucidatingrhe integer topological charge of these configurations im-
their nature. In Sec. lll we characterize the thermodynamiglies a singularity at their originr&0), which forces the
behavior of vortices in the Kosterlitz-Thouless transition byfield amplitude¢(r—0)—0. For larger it is energetically
analyzing their statistical clustering properties. We find, innecessary that the field amplitude approach the minimum of
agreement with the Kosterlitz-Thouless paradigm, that théhe potentiale(r —0)— ¢g= 7.
transition proceeds by pair unbinding, which can be observed These boundary conditions do not guarantee that the de-
prior to a vortex percolation transition. The latter occurs at dect’'s energy is finite. In fact fob=2 the energy of topo-
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logical defects still diverges in the infinite-volume limit as a Although finite, the potential of this dipole is still substantial.

consequence of the phase gradient terms, which dominate tAevo well-separated pairs of monopoles then interact via

energy far from the singularity at=0. These phase gradi- o

ents lead to an asymptotic form of the energy, for ldrge . [1-To—=(r-19)(r-1,) 13
ymp 9y 9 VB (1) = gind] 112 (Ir D(r-Ta) | o )

(6)

1 I 1
E= dx=|V |2 znzf drrP-1=,
fx|<l 2| ¢| $o q 2

0 ; (2 Since the interacting potential decreases inversely with sepa-

ration, we see that monopole pairs can similarly exist in a
dilute, weakly interacting state, but also that their mutual
interactions are stronger than between vortex pairs. As we
will see below this characteristic affects the thermodynamics
of monopoles relative to vortices considerably. We remark in
passing that the leading interaction between monopole pairs,
uapart from polarization inner products, behaves in 3D as the
Coulomb potential. The Coulomb gas in 3D has a transition,
9Y%ssociated with the familiar process of ionization, which is a
used as an estimate for the energy of a pair of kiZEhis smoqth analytical crossover. In terms of monopole_ pairs this
. . transition would occur between a phase of free pairs gas and
haive expectation may be_ Changed For-D>3 [19], where_ another where monopole pairs become bound to form clus-
the minimal energy conflguratllon bgtween two topolog|cal rs. If it occurs, we may then expect that this monopole pair
defects_was argued to be one in .Wh'Ch the far field is rot""te%fr:msition will not lead to criticali.e., nonanalyticbehavior.
to a uniform phase everywhere in space, apart from the re- To estimate the free energy of a pair of defects we must
gion between the defects, where energy is concentrated arﬁ%a"y estimate its entropg=In(Q), whereQ is the number
which behaves as a strifig0]. Then the interaction potential of states of the pairQ is proportic;nal to the surface of the
between two p_oin_t topological defectsin=N>3 will be of D —1 sphere of radiuf i.e., the number of configurations a
the same qualitative form as In=N=3, although the asso- pair can take when rotated around its center of mass.

C|a_ted string t_enS|on will differ quantitativelyt is expected Then the single-pair free energy in arbitrary dimensibn
to increase withN). is

The simplest interesting example of interacting point de-
fects is that of vortices ilD=2. The vortex-antivortex di- 2
Fo=o(l)=E +apegIin(l)—Thbpin(l),
pole has a field p=2(1) ctapegn(l) pIn(l)

wheren is the topological charge of the field configuration.
The diverging energy of a single defect ioi=2 prohib-
its it from occurring as a fluctuation in thermal equilibrium
in the infinite-volume limit. Instead, defects can occur in
defect-antidefect multipolegusually pair$, which due to
mutual screening can then have finite energy, a continuo
function of their separation. In the case of a pair, the char
separation introduces a natural cutoff to E2).which can be

. Lo Lo Fp=o(l)=Ec+ape3l®2—T(D—1)bpln(l), (7)
VERI(r) = — @Zn2[In(|r + [12)) ~ In(|r = 72])] b2 ¢ Tpro P
whereE; accounts for the total core energy of the two de-

Fl 2
__ 2.2 ! o '_ 3 fects in the pair anédp andbp are geometrical dimension-
=—¢ing — +0[ =||, (3 -nsio
r r less constants dependent on the number of spatial dimen-
sions.

wherel is the vector connecting the positive to the negativeth WeﬁeTph?S'tzr? th(‘?tf'n tthes_e conm?tertz_atlolnstr:/ve neglllected
charge in the pair. As a consequence of 8ja point vortex e effects of other defect pairs. Qualitatively these will re-

far away from the dipole interacts with it via a potential 9UC€ the free energy of the new pair relative to the above

inversely proportional to distance. Two well-separated pair§5t'mates’ as they will tend to orient themselves in order to
then interact with a potential partially) screen the new charges. Thus E@. should be

thought of as an overestimate.
The free energy of the pair gives us a qualitative measure
(4)  Of its probability in equilibriumP(l)ce FO'T We will ex-
’ plore this relationship further in Sec. Ill. For now we note
that for D=2 both the energy and entropy terms behave
wherelﬁ1 and fz are the separation vectors within each of thelogarithmica!ly withl and the overall sign of the free energy
sl . ._for large pairs depends on the temperature, as noticed by
pairs,r is the vector connecting the center of the two PaIrs, sterlitz and ThoulesEL8]. In the lowT regimeF grows
andr=r/r. Thus a dilute gas of weakly interacting vortex with charge separation, leading to the suppression of large

[ To=2(r-Ty)(r-Ty) +o(|3>

r? r

i 4. 4
VB (1) = gint

pairs can exist at low temperatures. pairs. For high temperatures the entropy term is dominant
~ Global monopoles have stronger linearly confining potenand large pairs have negative free energy. This suggests the

tials. Their dipoles therefore behave as existence of a highi- phase characterized by the unbinding
_ of defect-antidefect pairs and the production of free charges.
VERA(r) = — @gnalIr +1/2| = |r = T/2]] This is the essential idea behind the Kosterlitz-Thouless

) mechanism for the @) 2D transition.

— 22T+ O(I—) } (5) For higher dimension® > 2 the energy term dominates at

0'a r large | for all temperatures and large pairs always remain
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exponentially suppressed. This simple argument suggestattice-gauge theory in 3D, which possesses 't Hooft—
that there is no unbinding topological transition o2 in Polyakov magnetic monopoles—the direct analogs of the
global models and that defects remain tightly bound foirall global monopoles in Eq.l) for N=D=3.
In order to destroy this picture it is necessary that the behav-
ior of the bare energy a_nd/or ngmber _of configurations \Ivith_ IIl. CHARGE CLUSTERING AND THE KOSTERLITZ-
would change due_ to_mteractlons_Wlth other de_zfect multi- THOULESS TRANSITION
poles. Such behavior is not seen in the Kosterlitz-Thouless
transition where the effect of other pairs softens the field As outlined in Sec. Il the behavior of a system of charges
modulus ¢, (the superfluid density or spin wave rigidity ~with logarithmic interactions in 20the 2D Coulomb gasis
leading to a renormalized value of the transition temperaturgvell known, underpinning the topological transition in the
but not to a different kind of transition. In E47) we have  O(2) 2D model. In this section we develop diagnostics that
taken the pair energy to be determined by a simple cutoff ofillow us to measure, in numerical studies of the equilibrium
the single-charge total enerd®). Our conclusions would partition function, the critical properties of topological point
remain unchanged if as suggestedi@] for D>2 the inter- charges. Later we will use the Kosterlitz-Thouless behavior
action becomes linear as the field's interacting core collapseds the benchmark for a charge unbinding transitionNof
into a string connecting the two charges in the pair. The=D =3 monopoles.
entropy term would still be dominated by the interaction en- Rather than using a discretized two-dimensional version
ergy in the same way as f@ = 3. of the Hamiltonian in Eq(1) we chose to study the 2RY
Thus we have reached the conclusion that no unbindingnodel which belongs to the same universality class. This
topological transition should ever occur fdi=D>2. We  choice has the advantage that X¥ model thermodynamics
put this expectation to the test in Sec. Ill, where we studyhas been extensively studied, both analytically and via large-
comparatively the thermodynamic behavior of both vorticesscale numerical simulations. Consequently its critical prop-
in 2D and global monopoles in 3D. erties are well known quantitatively, including dimensionful
We devote the remainder of this section to a few addi-quantities such as the Kosterlitz-Thouless transition tempera-
tional remarks about the applicability of the free energy conture Tyt and the temperature at which the specific heat peaks
siderations of defect pairs to more general circumstances. Ahcy -
interesting limit is that of systems that remain disordered due The XY model consists of a set of two-dimensional unit-
to topological configurations down f6=0. In the class of length spins with nearest-neighbor interaction. The Hamil-
models of Eq.(1) only the case of th&l=1\¢* theory(or  tonian is given by
the Ising modelin 1D has this property, due to the presence
of kinks (or domain wall$. In gauge-Higgs field theories
the physical properties of topological solutions change radi- H{s=—3> S-S, (8)
cally because the phase gradients, which dominate the ener- {1
getics of global defects, become pure gauge transformations
and carry therefore no energy. This property is a direct resulvhere the sum is over all pairs of nearest-neighbor sites and
of the Higgs mechanism. The phase gradients correspond e takeJ=1.
Nambu-Goldstone modes, each associated with a generator All quantities below were obtained via standard Monte
for the remaining unbroken symmetries. In the Higgs mechaCarlo generation of large ensembles on a lattice of sizé.128
nism these massless modes are “eaten” by the gauge fieldkor each temperature we obtained a set of 2000 independent
which in turn acquires a mass. Thus the total energy of gaugeonfigurations, from which we measured global properties of
defects is concentrated in their cores and falls off exponerthe vortex population. Local quantities not involving use of
tially with distance. Then gauge topological charges interactime-consuming cluster algorithms were averaged over larger
via a short-range potential, in contrast to global defects. Thignsembles. The vortex content of each field realization is
interaction energy can typically be neglected or treated effecdetermined by identifying integer spin windings around the
tively, as a change of the core energy, in our thermodynamitattice plaquettes. The values for the two characteristic tem-
estimates. peraturesT «1=0.89 andTl o= 1.03, were obtained from the
By repeating the free energy argument with core termditerature (see, e.g.[23—-25) and are confirmed below. In
only we see that the entropy contribution is dominant for allparticular we checked that the specific heat peak3 &t
temperatures, for large separation®ier 2. This implies that ~ within statistical error.
for large enough separation defect-antidefect pairs are al- Figure 1 shows the temperature-dependent density of vor-
ways likely fluctuations and suffer no Boltzmann suppres-tex pairsp,,(T) defined as the fraction of lattice plaquettes
sion down toT=0". This “condensation” of free topologi- occupied by a positive charge. Note that although the total
cal excitations can explain striking properties of non-Abelianvortex densityp,,(T) increases with temperature it does not
gauge theorie$21]. The thermodynamic spectrum of these show a clear change of behavior at eitfigs or Tcy, . This is
models should then be characterized by the existence of @ot surprising since the system does not undergo a second-
dilute gas of free defects at low temperatures. The numericairder phase transition, and the critical singularities are much
verification of this expectation is presently the subject ofweaker in nature. In particular the properties of a few large
intense research. Hints of this behavior have recently beevortex pairs, crucial for the onset of phase disorder, are
found numerically; see, e.g[22], for the case of a S@  masked irp,,(T) by the existence of many more small pairs.
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FIG. 1. The plaquette density of vortex pairs for the XY FIG. 2. Cluster chargQ,, vs clustering lengtth, for a tempera-

model. Error bars denote standard deviation over 4000 independefitre slightly below (top ploy and above (bottom plo} the
field realizations. Both the Kosterlitz-Thouless temperafiggand ~ Kosterlitz-Thouless temperature, in the 20¢ model. Below the
Tey, at which the specific heat peaks, are shown. No signs ofransition the mean charge decreases monotonically lyithThe
critical behavior are apparent in the total vortex density. clustering lengtt, for which Q=0 increases a§—Ty. For T
>Tyr, Qg peaks at an intermediate valuelgfbefore decaying to
In order to see signs of the unbinding we must study theero. Standard deviation error bars of order of the results not shown
properties of the vortex population in greater detail. for clarity.
To achieve this we must deal with the ambiguity involved
in grouping vortices in pairs. To overcome this problem inperature around .
the most general way possible we choose to group the vorti- The behavior ofQ, at low temperatures can be under-
ces in each field realization into clusters, defined in terms oftood in terms of the properties of a dilute distribution of
an adjustable length parameted,. Vortices or vortex-antivortex pairs. A vortex and an antivortex will be in
antivortices—we do not distinguish between the two—the same cluster if their separation is smaller than the chosen
separated by less thdp are collected in the same cluster. | . If the distance between different pairs is large, all pairs
Thus, each cluster consists of the set of vortices and antivowwith separation smaller thdg will be in neutral clusters. In
tices that lie within a distanck, of at least another element this case the charged clusters will consist only of single
of the cluster. charges from pairs with separation larger thgn With in-
The cluster decomposition is achieved efficiently by ap-creasing clustering lengti,, should then decrease, reach-
plying a generalization of the Hoshen-Kopelman algorithming zero wherl  becomes of the order of the largest pair in
[26], developed originally for studies of percolatioly, is  the sample. At this length all clusters become neutral. We
successively increased, starting from the lattice spacing, thghen definel e,z bY Qci(Lneura) =0, @ measure of the size
smallest length scale in the problem. For ebglve measure  of the largest pairs at a given temperature.
a set of cluster properties. In particular the topological charge The top plot in Fig. 2 illustrates the typical behavior of
properties of clusters are ideal diagnostics in the search fap,, just belowTyr. Q(l.) has a long tail for large values
signs of a charge unbinding phase transition. of the clustering lengtup to |4=20), signaling the pres-
As a consequence of our choice of periodic boundary conence of large pairs. For lower temperatur€y, decays
ditions the sum over the charge of all clusters in the voluméaster. In Fig. 3 we plot the variation f,q 4 With T. Up to
is always zero. To quantify the typical charge of a cluster, wehe Kosterlitz-Thouless temperaturg,zincreases as pairs
define, for each choice df;, a mean cluster charg®.  with larger and larger separations are produced.
Here Qg results from adding up the absolute value of the  According to the standard picture of the KT transition,
chargeQ of each cluster in a given realization and dividing aboveT,; free charges appear in the system. Their presence

the result by the total number of clusters, i.e., affectsQ(l) because a population of free vortices changes
the charge of otherwise neutral clusters. Thus we can no

Qu= 1 1Q 9) longer expectQ(l.) to decay monotonically. In fact we

" Noustersciisters' < observe that above the transiti@dy, displays a peak at a

finite value of the clustering length, which we define as
Figure 2 show(l) for two different values of the tem- L ,eq. With increasing temperature the value lofe, de-
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FIG. 3. The smallest clustering lengthe,, at which all vortex FIG. 4. Length for cluster charge peak in the XIY model. For

clusters are neutral, V&, in the 2D XY model. For low densities T>T,;, the length at which the cluster charge function peak de-
L neuraiCOrresponds to the separation of the largest pair itfthite) ~ creases withl' due to the production of higher densities of bound
ensemble. and unbound pairs. BeloWy; the mean charge decreases With

we definel o= in this case.
creases and the height of the peak increases. This is the result

o S e o, Sk nL v crtesponc o th production a singe very
ges. y arge (presumably infinite in the infinite-volume limipair.

reduces the mean distance between them and moves the peak- | "o\ oo systems, where there is no positive cor-

to lower IC,.. This behavipr has the important CharaCteriStiCrelation between vortices and antivorticys,) =Lper. This
thatLpeakdlverges_ .agKT is approached from apove. Higher limit must be reached at high temperature as is indeed shown
free charge densities also lead to a decreadsg,df,, above in Fig. 5. Moreover, we see that foF<Tc, the length
Tyt ( Q%L. This ind . .
. . - . This includes the vicinity off xr, where pairs
ma; perc KT »

gze behawtqr Olf bgtr%ﬁeu“a'apgl‘peaﬁ's shlown n Flgs% 3 i remain dilute enough that they can be identified. The density
and 4, respectively. both quantities show clear signs of Crilly, o514 where the vortex system becomes densé& is
cal behawor_atTKT, a_lthough the pehawor OF neutrat 1S =Tey, but a precise identification would demand careful
plagued by higher statistical uncertainty. finite-volume scaling. In any case we also see that the ap-

Ch;\lrogestrllr?; pegirsu?:lngnl?];snngté?e ?glﬁng alrs]eté):]gglnt roach to a dense state occurs seemingly continuously, with-
9 y dispiay 9 prop ' 9 ut any clear signs of critical behavior. In this sense it may

temperature is increased two concurrent effects take plac ot be possible to associate it with a particular valug.of

The first is that pairs with larger separation and higher inter- We have now used cluster decomposition methods applied

action energy are nucleated_. The second_ls the prod_uctlon % the vortex population to characterize its critical properties.
more pairs at small separations. Depending on the mterpla\\/\/

between these two trends a situation may be reached wh e found results in good agreement with previous, more
y (T’l?nited, numerical studie$25] and with the theory. As the

the distance between different pairs is of the same order I . )
the separation within each pair. In this case the system bﬁ%mperature is increased free vortices first appedjaiand

. . A are maximally produced approximately &gy, where the
;g:ges densét percolates and pairs become indistinguish- vortex system becomes dense and the concept of a vortex

In order to determine the temperature at which pair per-palr ceases to be meaningful.

colation occurs in the 2IXY model we measured, for each

configuration, the value of the clustering length at which all IV. MONOPOLES IN THE 3D O (3) MODEL
clusters become neutrél,,, as well as the minimunh,
for which all vortices in the sample fall within the same
cluster, Lec. Note that(ly,,, differs from Lpeyyq in the In this section we apply the tools developed in the context
sense thatl o, is a thermal average of the size of the largestof the Kosterlitz-Thouless transition to a 3D scalar field
pair in each sample, wherehge 4 1S the size of the largest theory with Q3) symmetry. Our analysis will be based on a
pair in all samples in our ensemble. In this sense the peak idiscretized version of a ¢* theory, Eq.(1). We start by
(Imay reflects a maximal production of large pairs where theestablishing its thermodynamic properties. In particular we

A. Thermodynamics of the model
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FIG. 5. Mean clustering length for neutral clustérg,,) in the FIG. 6. Order parameter for the 3D(® model and correspond-

2D XY model, error bars corresponding to standard deviation oveing power-law fit in the critical region. The temperature has been
2000 field samples. The dashed curve shows the clustering lengfiescaled to T—T,)/ T, settingT.=0.41 as determined from the fit.

for which all charges are gathered in a single cluster, standard desrror bars denote standard deviation over an ensemble of 200 inde-
viation of the same order as fky,, Not shown for clarity. When  pendent field realizations.

the two curves meet nedi., the system becomes dense.

. . ) o _ set todx=0.5 and the model parameters chosen tonife
will be interested in determining the value of the critical =1.00=1.0. We used a computational domain with
temperatureT . at which the model displays a second-order_ g points per linear dimension. Both local and global

phase transition. . observables were measured over at least 200 independent
In order to generate a Boltzmann distributed ensemble ofig|q realizations.

field configurations we have evolved a second-order in time  Aq an order parameter we have used the norm of the
Langevin fie_ld.equat.iomsee[27] fpr more details For our spatially averaged field| ¢y|), defined as

purposes this is equivalent to using a Monte Carlo or cluster
algorithm. The advantage of the Langevin equation is that it T 5
can be easily generalized for time-dependent systems. In a _ \/ _f .

future publication the equilibrium states generated in this (o) ;1 \% ded)'(x) ' (12
way will be taken as initial conditions for real time out-of-

equilibrium studieq 28]. which is analogous to the magnetization in spin models.

The procedure is as f(_)lloyvs. We evolve the three- Figure 6 shows the temperature dependence|f/).
component real scalar field in time with the equation of mo-g, T>T..(|¢y|) vanishes. Near but beloW,, the order

tion parameter displays universal critical power-law behavior

e~

Te

2_V2) b — b 2 +np:=I;, (10 P
(9 )i m¢|j:21,3¢1+)\¢|+77¢| i, (10 . B>0, (13

<|¢>v(T)|>=B<

where ie{1,2,3}. We discretize this scheme using a

staggered-leapfrog method with time s#p=0.04. The ran- which is the analog of the magnetization density in spin
dom forcel’;(x,t) is a Gaussian distributed field with tem- models. Hereg is the universal critical exponent associated
peratureT as determined by the fluctuation-dissipation theo-with the behavior of the magnetization bel@wand is not to
rem.T’; is characterized by be confused with the inverse temperature elsewhere. By fit-
ting the numerical values fqif ¢y|) to Eq.(13) we are able

to measure the critical temperature obtaining=0.41. This
sets a reference point, the most important scale in the system.
We also compute the critical expone@t=0.36. This is in
The value of the dissipation coefficientdoes not influence good agreement with both recent theoretical and large-scale
the equilibrium results and in our simulations we chogse Monte Carlo estimates for the critical exponent which give
=1.0 to ensure rapid convergence. The lattice spacing wa8=0.366(2) andB=0.3685(11), respectivelysee, e.g.,

2
(T',(x))=0, <ri(x)rj(x')>=?”5ij5(x—x’). (11)
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FIG. 7. The mean plaquette density of monopole pajs vs FIG. 8. Fit for the mean density of monopoles fexp

reduced temperature for the 30{3) model; error bars as in Fig. 6. (—Eo/T); error bars as above. In the low-temperature regime we
obtain A=7.0+=0.6 andE,=1.98+0.02, fitting the first 23 data

[29] and references thergirand provides a check on the points. Below T, the density displays near exponential behavior

accuracy of our numerical setup. down toT=0.
B. Monopole statistics Z(T)=1+ 2 e EplT (14
We are now ready to analyze the properties of the equi- pairs

librium global monopole population. For each field realiza-

tion monopoles and antimonopoles are identified by measuiyhere the sum is taken over all single-pair internal configu-

ing the three-dimensional winding number of the field rations; i.e., it excludes translational modes. We take the pair
around each cubic lattice cell. The algorithm used is basednergy to be of the form

on a higher-dimensional generalization of the geodesic rule

traditionally used for identifying strings in @) theories

[30]. Details of this procedure are given in Appendix B. Ep=Ectoal, (15
Figure 7 shows the density of monopole-antimonopole

pairs (defined as the total positive charge in the computawherel is the monopole-antimonopole separation in units of
tional domain divided by the number of lattice sjte®rsus |attice spacing. In the continuum the simplest way to com-
temperature. The total monopole density,, increases pyte z(T) would be to use the approximate expression for
smoothly withT and its derivative peaks at the critical point, the free energy, Eq7). While this should be valid for large
signaling the second-order phase transition. Abdyethe  yajues of the pair size, such an evaluation of the number of
rate of increase diminishes and the total pair density constates breaks down relative to that on the lattice, especially
verges slowly to approximatelp,,—0.17 asT— (not  when| becomes of the order of the lattice spacing. Since we
shown). expect the monopole population to be dominated by small
Figure 8 shows a log-linear version of Fig. 7 illustrating pairs, the continuum approximation would be a significant
how over nearly the whole temperature range belQWpmm  source of error. To circumvent this problem we calculate the
is well fit by an exponentigh,,=Ae 50'T. Only very near partition function by evaluating numerically the sum in Eq.
the critical point does the fit fail to follow the density curve (14) over all possible lattice configurations of a pair with
accurately. This behavior suggests that the increase in thged center, for a given choice &; ando. In this way the
total monopole density is dominated by the creation of larg&yumber of pair configurations on the lattice and, therefore,
numbers of minimum-size pairs, each with typical energyihe entropy are calculated exactly.
Ep=2.0. Monopole thermodynamic averages can be easily evalu-

An understanding of this behavior can be obtained byated fromz(T). The total pair density per site is given by
evaluating the partition function for monopole pairs under

certain simplifications. If we assume pairs are independent,
i.e., if we neglect pair-pair interactions and volume exclusion
effects, the partition function for a pair is

Z(M-1
P T)= Zm (16)
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FIG. 9. Numerical data for the total pair density and correspond- FIG. 10. Same as Fig. 9 for the 20Y model. The theoretical
ing fits nearT,: error bars as in Fig. 7. The energy varying theo- CUrves were obtained by fitting the low-temperature data up to
retical curve(solid ling) was fitted to the 18 lowest-temperature = 0-75, whereas the simple exponentished lingfails to follow
points (not shown in the plotup to (T—T.)/T.=—0.25. The thg obsewgd den§|ty gboﬂ'e(T. Th.e curve obtained from the par-
simple exponential fitdashed ling fails to follow the numerical tition function, which includes pairs with all separations, matches
curve up toT,, indicating relevant production of higher-energy, the data well up tdcy .

larger separation pairs in the critical region. The varying energy fit . . . .
on the contrary matches the data well up to the critical point. medium-dressing effects, resulting both from the influence of

other monopole pairs and from interactions with the spin-
By allowing E, and o to take arbitrary values, we fit the Wave degrees of freedom.

predicted pair density to the numerical datay/quared fit In any case the unequivocal exponential behavior of the
leads to estimated values of the interaction parameters dftal density below the critical point implies that<2. The
E.=0.26 ando=1.71. quality of the fit usingo=1.7 and its success in predicting

In Fig. 9 we compare the monopole density obtained other features of the dataee belowsuggest that one should
in this way to the numerical data and to the simple exponenf©t Place exaggerated confidence in the classical single-
tial fit discussed before. Clearly taking into account pairsTonopole result. o ,
with variable separation improves the estimate leading to M @ Previous publicatiorf31] two of us predicted the
precise results up td.. It remains true, however, that the vallue of the.defect density at cr|t|cal_|ty for @ theongs.
monopole thermodynamics is always dominated by veryTh'S calculation assumes that fluctuation3 gaire Gaussian,
small pairs. Using the fit results fd&, and ¢ we obtain the with their scale-invariant connected two-point function char-
following energies for the smallest pairs allowed on the lat-2¢terized by the universal critical exponeptthe anomalous

tice: E(1)=1.97E(\/§)=2.68, andE(\E)=3.22. Consider- dimension. Using thg value @f,,=0.17 at infinite tempera-
ing the contribution of the first three terms in the partition lUré as a normalizatiotsee[31] for details leads to a pre-

function already leads to a very reasonable approximation t§ict€d Pmm(Tc)=0.07 for A3) in 3D, in good agreement
Z(T): with the present numerical measurements.

A similar calculation of the temperature dependence of
Z(T)=1+6e 197 10g7268M gg=322T  (17)  the vortex pair density can be done for the X¥ model. As
in the monopole case, the low-temperature Monte Carlo data
This givesp,,m(T.)=0.07, in good agreement with the mea- is reasonably well fitted by an exponential. Assuming a pair
sured valugthe integer pre-factors are the number of differ- energy of the formE =E + aIn(l) and calculating the par-
ent lattice configurations for a pair at these separations tition function as before, the prediction can be improved
The value measured fer is considerably lower than the leading to good results up B¢y (see Fig. 1@ The single-
one obtained from the single-monopole classical estimate iexponential fit for lowT givesEqy=7.2 which compares well
Sec. Il. Evaluating Eq2) exactly we have for the single-pair with a previous result of 7.5, measured by Gupta and Baillie
energyE,=E .+ 47rm?/\ X1, which leads tor=2 in lat-  [23]. The difference is probably due to our fit being based on
tice spacing units §=0.5). The difference between this low-T data points only. In the same artidi23] Gupta and
classical value ofr and its value inferred from fitting the Baillie also obtained a different exponential fit in the tem-
thermodynamic monopole density is a consequence of strongerature region betweeér andTy with a higher value for
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FIG. 11. Mean clustering length for neutral clustéesror bars
correspond to standard deviation over 200 field sames per- FIG. 12. Theoretical prediction for the temperature-dependent
colation length(dashed curve, standard deviation error bars of theM€an maximal pair sizdl na, and pair separatiohperc, for the 2D
same order as fofl .Y, Not shown for clarity for the 3D Q3) XY model(left) and the 3D @3) model(right). At the temperature
model. The system becomes dense well below the critical temperdvhere the two curves cross, the system becomes dense and it is no

ture when the two quantities become comparable. longer possible to distinguish individual pairs. The steplike appear-
ance of(l 4, in the right plot is due to lattice discretization effects

on |, which are apparent due to the small size of the monopole-

Ey. Using the form(15) we are able to fit both temperature antimonopole pairs.

regimes obtaining they squared result€,=6.7 and o

=29. fast growing linear interaction term. As a consequence the
_ Following in the footsteps of the 2D charge cluster analy-system percolates mostly due to a high-density population of
sis we now turn to the properties of monopoles in th®)O  gmga|| pairs at a temperature where large pair configurations

3D theory. Figure 11 showdna,) andLpeecin terms of the  have an exponentially negligible contribution to the thermo-
reduced temperature in the critical region. The monopole endynamics.

semble becomes dense when the two length scales are com-Tq jnvestigate this behavior we can use our approximate
parable I ma,)=Lperc, and it is no longer possible to identify partition function to calculaté(l), the density of pairs of
isolated pairs. This happens at{ T¢)/T.=—0.25, the tem-  gjze|, as
perature at whiclil .,y peaks, well belowl .. This behavior
stands in striking contrast to that of vortices in the 2D case
(see Fig. %, where the vortex gas percolated only in the
exponentially disordered phase®tTey> Tk . wheren(l) is the total number of configurations for a pair of
It is important to realize that this behavior of monopolessizel. This expression can be readily evaluated numerically.
is not in contradiction with maintaining long-range order up We then useN(l) to estimate the size of the largest pair in a
to T.. The system of monopole-antimonopole pairs can becomputational domain by finding the value fbisuch that
come dense without disordering the field over large disN(l)xLP=1.0, whereL is the linear size of the computa-
tances. This can be understood by considering a domain witional volume. That is, we demand that in each computa-
radius much larger than the maximal pair size and is esseriional volume there should be on average one pair of maxi-
tially the earlier result of Bitar and ManousaKis7]. Since  mal size. This length scale correspondgltg,,). The value
the total field winding in the domain’s surface is given by theof (I ,,,,) estimated in this way is plotted against temperature
total charge in its interior, its value will be zero. That is, for both models in Fig. 12.
finite pairs will not affect the long-range behavior of the field  In order to calculate the percolation temperature in this
on scales larger than their size; only unbound charges campproximation we must estimalg,... This can be done by
lead to the breakdown of long range order. assuming that the typical distance between pairs is of order
The proliferation of small pairs in the three-dimensionalof 1/p(*®), wherep denotes eithep,, or p,m depending on
case is made possible by the fact that the core energy of titbe dimension. This implies that we will have percolation
monopole is small when compared with the interaction powhen (l,,.,0=1/p*®. Figure 12 shows the temperature de-
tential. This leads to production of large densities of smallpendence oL ., estimated as af*®), using the param-
pairs, while large pairs remain strongly suppressed by theters from the previous density fits. The point where the two

N(D=Z"YXT)n(l)e BT (18
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curves meet defines the percolation temperature where theot to say that their disordering influence can be completely
charge ensemble becomes dense. The values obtained agneglected. Their effects must generate a short-distance non-
reasonably well with the data. For the 303Dcase we find trivial quantitative contribution to critical exponents, thus
the percolation temperature to b&{T.)/T.=—0.2 with  making the universality class in their absence diffefdd.
pairs of maximal size 4, compared t® { T.)/T.=—0.25, In this way we must conclude that there is a nontrivial
with the largest length of around 5.5 from the numericalinterplay between monopoles and spin waves in tt8) O
results. For theX'Y model we obtainT=0.96, slightly below model and that the detailed nature of the critical behavior is
Ty, but still clearly in the exponentially disordered phasechanged if either are suppressed.
andl =10, which coincides with the numerical result for the = The generalization of these qualitative results to arbitrary
mean size of the largest pair per box at the percolation temN=D>3 is immediate. The potential between defects be-
perature. comes steeper and steeper as a functidn afid topological
excitations, just like monopoles in 3D, will never unbind. In
this way topological excitations do indeed become more and
more irrelevant, asN increases, for the physics of large
We started this paper by using single-defect-pair free enlength scgles that characterizes thermodynamics in the criti-
ergetic arguments to predict that no pair unbinding transitiorf@l domain of ON) models. . .
should occur for point defects in &) models with global We also see from this perspective that upon cooling the
symmetries foN=D>2. We then verified this prediction by SYyStém most topologlcgl fluctuations will annlhllgte with a
comparatively studying the defect thermodynamics of vorti-nearby antidefect, leading to small and quickly disappearing
ces and global monopoles occurring in typical configurationgopulations of topological defects. From this perspective
drawn numerically from canonical ensembles of the)o 9lobal topological monopoles formed at a cosmological
model in 2D and an @) field theory in 3D. phase transition present no real danger of creating a “mono-
We measured in great detail the behavior of vortices?0leé problem.” _ _ _
across the Kosterlitz-Thouless transition and found it in Ve conclude by invoking a complementary view of the
agreement with the expectations of the theory, which predictBhase transition in @) models. There is clear evidence
the appearance of free vorticesTag . In the O3) model in ~ (@nd mathematical proofs in certain particular cassit
3D isolated single monopoles never occur. Instead the mongiticality in O(N) scalar models is equivalent to the perco-
pole ensemble transits from a dilute pair phase at low temlation of so-called Wolff spin cluste{S$2]. Wolff clusters are
peratures, to a dense monopole gas, through the nucleation Bilt by forming bonds among adjacent spins according to a
large numbers of tightly bound pairs belo. We have temperature dependent probability. Because of this probabi-
seen that this behavior is consistent with qualitative expectdiStic assignment, Wolff clusters are subsets of the set of
tions based on the single-monopole pair energetics, which iglusters formed by associating all adjacent spins with the
characterized by a light core and a linearly confining inter-Same orientation. Clusters formed by considering spins with
action potential. Our quantitative treatment shows, howevethe same orientation, without this probabilistic restriction,

that the bare parameters in the monopole potential—th@ercolate below¢. Itis the typical size of these latter “con-

cantly renormalized by thermal medium effects. accprding to the Kibb_Ie—Zuremo,ll] theory of Qefect for-
The thermodynamic behavior of global monopoles is con/nation. Our observation of monopole percolation befbw
sistent with both a (noncritica) topological-charge IS c_ompa.tlble with thls scenario. The interesting questions
conductor-to-insulator transition and the absence of longtesting this hypothesis and determining the detailed relation-
range phase disorder at temperatures belw Global shlp bgtwe_en Wolff clusters and topological excitations at
monopoles in 3D do not behave like Coulomb charges, bugfiticality will be left for future work.
rather more like static quarks, since they interact via a lin-
early confining potential. The conductor phase in this case ACKNOWLEDGMENTS
cannot be reached by the nucleation of truly free isolated
charges, as in the Kosterlitz-Thouless transition. It instead This work is supported in part by the U.S. Department of
results from the fact that in a dense monopole gas chargdsnergy under cooperative research agreement No. DF-FC02-
can move freely by hopping from a nearby anticharge t094ER40818. N.D.A. was supported by PPARC. M.K. ac-
another. Because local charge neutrality persists to all finitknowledges support from the Swiss National Science Foun-
temperature$17], the dense monopole gas does not lead tadation under Contract No. 83EU-062445. We would like to
long-range disorder of the field phaseping. Long-range thank R. Durrer for helpful discussions. N.D.A. would like to
phase fluctuations must therefore arise from different degregank G. Volovik and A. Schakel for useful suggestions.
of freedom, the spin waves. This is indeed the renormaliza-
tion group picture of the transition, which correctly predicts
all universal critical behavior. From this perspective we con-
clude that monopole excitations, although contributing to
short-range disorder in the(8 model in 3D, are incapable The free energy arguments of Sec. Il can be generalized to
by themselves, because of their enslaving energetics, of pr@xtended topological defects. In this appendix we consider
ducing long-range disorder at any finite temperature. This ishe case of line defects.

V. CONCLUSIONS

APPENDIX A: ENERGETICS OF LINE DEFECTS
IN D DIMENSIONS
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Let us look first at the case of one-dimensional defects
N=D—1. For a stringlike object the core energy is propor- ¢
tional to its length, and the entropy can easily be calculated '2
assuming that it behaves like a random walk. The humber of
different configurations for a closed random walk in a cubic
D-dimensional lattice is given by

Q=(2D)'(4m)~P2x| 71, (A1)

Oy

The first two terms count the number of possible closed ran-
dom walk loops withl steps and the final factor takes into
account the arbitrariness in the choice of initial point in the
loop. We see that the entroi8z In(2) grows linearly withl.
The free energy is thefomitting dimensionless constajts

FIG. 13. The monopole charge in a cubic cell is identified by
projecting the field vectors at every corner onto a unit sphere. Each
triangle on the square faces cube is thus mapped onto a spherical
triangle (the one with the smallest surface is chgsérhe sum of
D the surface of all these triangles, divided by 4is then taken as
—+1/In(l)—In(2D)TI, (A2)  defining the monopole charge inside the cubic cell.

Fi)=ol +E+T| 3

whereo is the string tension and,(I) the interaction energy sion, the entropy of a typical defect configuration decreases
for the loop. In generdE, is a function not only of the string with N. Since the interaction energy increases with the num-
length but also of its detailed shape. We start by consideringer of field components, we expect that for anand above
the case when the interaction energy can be neglected. ThencertainN the free energy will always be dominated by the
we see immediately that the system will undergo a phasgteraction component and proliferation of defects is prohib-
transition above a Certaﬁﬁ, characterized by the prOlifera- ited at all finite temperatures_ For=3, for examp|e’ Strings

tion of long strings. This is because both the entropy anq)ro"ferate in the highF phase foN=2 but no unbinding of
core energy have the same dependenck as was the case charge pairs occurs fdd=3.

in the Kosterlitz-Thouless transition.

This set of approximations gives a reasonable description
of the D =2 Ising model, where there is no long-range inter-
action between strings and probably also of strings in gauge
theories in any dimension. In contrast to the case of mono-
poles, where the pair interaction was responsible for the con- ) ) ] ) ]
fining phase at lov, here it is the core energy of the string e identify Q3) monopoles in a 3D cubic lattice by gen-
that keeps it at a finite length. eralizing the well-known “geodesic rule” used in most

The interaction energy is hard to estimate and depends igosmic-string lattice-based simulatiof&0].
general on details of the underlying model as well as of We count the winding of the field vectors around each
particular configurations. We can make a rough estimate bynit cell in our grid by using a “smallest-area” assumption.
assuming that the string remains a random walk and consgo this end, we triangulate the faces of each lattice cube and
quently that the distance between two points on the string ithen map the (3) field vector at all corners onto the unit
of order of|*2, Then if two distant string segments interact sphere(the presence of a monopole depends only on the
as pointlike defects in an ®(—1),D—1 theory, the loop orientation of the field, not on its nopmFor each triangular
energy will be given by element in the cube’s surface this defines a solid angle on the
unit sphergsee Fig. 13 The sign of the solid angle is taken
according to the handedness of the corners. Its v@luzan
be calculated thanks to a formula that relates the area of the
spherical triangle, defined by three vectors on a unit sphere,
to the angles between the geodesic sides of the triangle:

APPENDIX B: DEFINING WINDING CHARGE
ON THE LATTICE FOR GLOBAL THEORIES

E(H)=IxIP~372 D>3
E,(h=IIn(l), D=3. (A3)

Clearly for D>3 the interaction term dominates over the

entropy for all T, indicating the absence of a proliferating

phase. The marginal case, r=3, is harder to judge in this

approximation, since the correction to the linear interaction O]=a+p+y—m. (B1)

is only logarithmic. In reality we have good eviden(&S]

that for 3D Q2) the string tension goes to zero & and

there is a percolation transition in the network, very close tooumming the solid angles corresponding to all the 12 tri-

the critical point, at which long strings spanning the volumeangles in the cube’s surface, we obtai) =47n wherenis

appear. an integer taken to be the charge of the monopole inside the
For higher-dimensional defects the calculation of the endattice cube|n| has an upper bound of 5 but in practice we

tropy becomes much harder. For example surfaces can barely observe charges larger thanhich we interpret as

topologically complicated, exhibiting holes and handles. Thewo coincident unit charges

general trend seems to suggest that for fixed spatial dimen-
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